Efeitos do hidroximetilfurfural a partir de redes de interação químico-proteínas nas espécies Apis mellifera, Bos taurus e Homo sapiens

Autores

DOI:

https://doi.org/10.5965/223811712432025515

Palavras-chave:

Análise bioinformática, Moléculas líderes, Vias KEGG, Mecanismo molecular, STITCH

Resumo

O hidroximetilfurfural (HMF) é um composto utilizado como indicador de qualidade em alimentos para humanos e animais. Sua concentração pode variar de acordo com as condições de armazenamento e processamento, sendo influenciada por fatores como temperatura, pH e tempo de armazenamento. O HMF apresenta propriedades antioxidantes, anti-inflamatórias e anti-hipóxicas, podendo proteger células contra danos oxidativos. Contudo, em altas concentrações, o HMF pode ser citotóxico, mutagênico e carcinogênico, o que denota a necessidade de compreender seus mecanismos de ação em diferentes organismos. Neste estudo, redes de interação químico-proteína foram construídas, no âmbito da bioinformática, para analisar os efeitos do HMF em Apis mellifera, Bos taurus e Homo sapiens. Em abelhas,

o HMF interage com proteínas como a GB17880-PA e a LOC551167 que estão associadas à resistência a múltiplas drogas e ao transporte de moléculas, sugerindo um papel na defesa contra estresse oxidativo. Em bovinos, o HMF interage com proteínas como a CYGB e a SDHA, envolvidas em funções respiratórias e produção de energia, também indicando possíveis efeitos protetores contra danos oxidativos. Já em humanos, o HMF atua sobre proteínas como a HBB e a SULT1A2, relacionadas ao metabolismo de hormônios e à imunidade, com efeitos que variam conforme a dosagem e a via metabólica ativada. De acordo com os resultados encontrados, observa-se que o HMF pode modular processos biológicos importantes, como a fosforilação oxidativa, o metabolismo de purinas e a sinalização celular. No entanto, são necessários estudos funcionais in vitro e in vivo para confirmar essas interações e elucidar os mecanismos moleculares envolvidos.

Downloads

Não há dados estatísticos.

Referências

ABDULMALIK O et al. 2005. 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. British Journal of Haematology 128: 552-561.

AHMAD AVD et al. 2024. Computational Biology Approach to Predict Molecular Mechanism in Cancer. Oral Oncology Reports 100651.

ALBALÁ-HURTADO S et al. 1997. Determination of free and total furfural compounds in infant milk formulas by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 45: 2128-2133.

ASK M et al. 2013. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnology for Biofuels 6: 181.

BEGLEY TP et al. 2008. Cofactor biosynthesis--still yielding fascinating new biological chemistry. Current Opinion in Chemical Biology 12: 118-125.

BLANK M et al. 2011a. Oxygen supply from the bird’s eye perspective: globin E is a respiratory protein in the chicken retina. Journal of Biological Chemistry 286: 26507–26515.

BLANK M et al. 2011b. A membrane-bound vertebrate globin. PLoS ONE 6: e2529

BOES KM & DURHAM AC. 2017. Bone marrow, blood cells, and the lymphoid/lymphatic system. Pathologic basis of veterinary disease 17:724–804.

BURMESTER T & HANKELN T. 2009. What is the function of neuroglobin? Journal of Experimental Biology 212: 1423–1428.

CAPUANO E & FOGLIANO V. 2011. Acrylamide and 5-hydroxymethylfurfural (HMF) - a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Science and Technology 44: 793-810.

CARDOSO AM et al. 2021. Sinalização purinérgica: implicações fisiopatológicas. Chapecó: Editora UFFS.

CERVONI MS et al. 2017. Mitochondrial capacity, oxidative damage and hypoxia gene expression are associated with age-related division of labor in honey bee (Apis mellifera L.) workers. Journal of Experimental Biology 220: 4035-4046.

CHATTERJEE A et al. 2021. Exome-wide scan identifies significant association of rs4788084 in IL27 promoter with increase in hepatic fat content among Indians. Gene 775: 145431.

CIARLONE GE et al. 2023. 5-Hydroxymethylfurfural reduces skeletal muscle superoxide production and modifies force production in rats exposed to hypobaric hypoxia. Physiological Reports 11: e15743.

CORTI P et al. 2016. Globin X is a six-coordinate globin that reduces nitrite to nitric oxide in fish red blood cells. Proceedings of the National Academy of Sciences 113: 8538–8543.

CROSS CE et al. 1987. Oxygen radicals and human disease. Annals of Internal Medicine 107: 526-545.

DE SANCTIS D et al. 2004. Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination. Journal of Molecular Biology 336: 917–927.

DERMAUW W & VAN LEEUWEN T. 2014. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochemistry and Molecular Biology 45: 89-110.

DEWILDE S et al. 2001. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. Journal of Biological Chemistry 276: 38949–38955.

DHAKAL J & ALDRICH CG. 2022. Temperature-dependent antimicrobial activity of menhaden fish oil in vitro and on pet food kibbles against salmonella. Journal of Food Protection 85: 478-483.

DING X et al. 2008. Studied on separation, appraisal and the biological activity of 5-HMF in Cornus officinalis. Zhongguo Zhongyao Zazhi 33: 392-396.

EDWARDS AM. et al. 1999. Photochemical and pharmacokinetic properties of selected flavins. Journal of Photochemistry and Photobiology B: Biology 48: 36-41.

ERKKINEN MG et al. 2018. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb Perspect Biol 10: a033118.

FABER J et al. 2006. Advances in understanding taste. What's New in Dentistry Rev. Dent. Press Orthodon. Facial Orthodontics 11: 1.

FALLICO B et al. 2004. Effects of conditioning on HMF content in unifloral honeys. Food Chemistry 85: 305-313.

GAO J et al. 2022. Combined transcriptome and metabolite profiling analyses provide insights into the chronic toxicity of carbaryl and acetamiprid to Apis mellifera larvae. Scientific Reports 12: 16898.

GLATT H et al. 2005. V79-hCYP2E1-hSULT1A1, a cell line for the sensitive detection of genotoxic effects induced by carbohydrate pyrolysis products and other food-borne chemicals. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 580: 41-52.

GLATT HR. & SOMMER Y 2006. Health Risks by 5 Hydroxymethylfurfural (HMF) and Related Compounds, in Acryl amide and Other Health Hazardous Compounds in Heat-Treated Foods (Skog, K., and Alexander, J., Eds.) pp 328−357, Woodhead Publishing, Cambridge, England.

GOTTESMAN MM et al. 2002. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Reviews Cancer 2: 48-58.

GREGORC A et al. 2019. Hydroxymethylfurfural affects caged honey bees (Apis mellifera carnica). Diversity 12: 18.

GU H et al. 2013. 5-Hydroxymethylfurfural from wine-processed Fructus corni inhibits hippocampal neuron apoptosis. Neural Regeneration Research 8: 2605-2614.

GUTIERREZ-AGUILAR R et al. 2012. Expression of new loci associated with obesity in diet-induced obese rats: From genetics to physiology. Obesity 20: 306-312.

HARDIE DG et al. 2003. Management of cellular energy by the AMP-activated protein kinase system. FEBS Letters 546: 113-120.

HARDT‐STREMAYR M et al 2013. Determination of metabolites of 5‐hydroxymethylfurfural in human urine after oral application. Journal of separation science, v. 36, n. 4, p. 670-676.

HARMAND D. 1956. Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology 11: 298-300.

HARRIS RM et al. 2000. Sulfation of “Estrogenic” alkylphenols and 17β-estradiol by human platelet phenol sulfotransferases. Journal of Biological Chemistry 275: 159-165.

HAWTHORNE DJ & DIVELY GP. 2011. Killing them with kindness? In-hive medications may inhibit xenobiotic efflux transporters and endanger honey bees. PLoS ONE 6: e26796.

HEAD CE et al. 2004. Some observations on the measurement of haemoglobin A2 and S percentages by high performance liquid chromatography in the presence and absence of alpha thalassaemia. Journal of Clinical Pathology 57: 276-280.

HUANG J et al. 2023. Differential Brain Expression Patterns of microRNAs Related to Olfactory Performance in Honey Bees (Apis mellifera). Genes 14: 1000.

IDZKO M et al. 2014. Nucleotide signalling during inflammation. Nature 509: 310-7.

JOHNSON RM et al. 2013. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS ONE 8: e54092.

JOHNSTON-COX H et al. 2010. Physiological Implications of Adenosine Receptor-Mediated Platelet Aggregation. Journal of cellular physiology 226: 46-51.

JUNGER WG. 2011. Immune cell regulation by autocrine purinergic signalling. Nature reviews. Immunology, 11: 201–212.

KAKAR S et al. 2010. Structure and reactivity of hexacoordinate hemoglobins. Biophysical Chemistry 152: 1–14.

KAMBOJ R et al. 2019. Optimization of process parameters on hydroxymethylfurfural content, diastase and invertase activity of coriander honey. Journal of Food Science and Technology 56: 3205-3214.

KANEHISA M et al. 2021. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Research 49: D545-D551.

KARABOURNIOTI S & ZERVALAKI P. 2001. The effect of heating on honey HMF and invertase. Apiacta 36: 177-181.

KAUSHIK G. 2015. Effect of processing on mycotoxin content in grains. Critical Reviews in Food Science and Nutrition 55: 1672-1683.

KEGG PATHWAY. 2025a.Disponível em: https://www.genome.jp/dbget-bin/www_bget?ame04142. Acesso em: 11 mar.

KEGG PATHWAY. 2025b.Disponível em: https://www.genome.jp/dbget-bin/www_bget?ame 04742. Acesso em: 11 mar.

KEGG PATHWAY. 2025c.Disponível em: https://www.genome.jp/dbget-bin/www_bget?ame 05022. Acesso em: 11 mar.

KIRSCHNING A. 2022. On the evolution of coenzyme biosynthesis. Natural Product Reports 39: 2175-2199.

KITTS DD et al. 2012. Demonstration of antioxidant and anti-inflammatory bioactivities from sugar–amino acid Maillard reaction products. Journal of Agricultural and Food Chemistry 60: 6718-6727.

KIYA T. et al. 2008. Expression analysis of the FoxP homologue in the brain of the honeybee, Apis mellifera. Insect Molecular Biology 17: 53-60.

KOONIN EV & GALPERIN MY. 2002. Sequence-Evolution-Function: Computational Approaches in Comparative Genomics. Boston: Kluwer Academic.

KRAINER S et al. 2016. Effect of hydroxymethylfurfural (HMF) on mortality of artificially reared honey bee larvae (Apis mellifera carnica). Ecotoxicology 25: 320-328.

LI Ming-Ming et al. 2011a. The protective role of 5-HMF against hypoxic injury. Cell Stress and Chaperones, 16: 267-273.

LI Ming-Ming et al. 2011b. The protective role of 5-hydroxymethyl-2-furfural (5-HMF) against acute hypobaric hypoxia. Cell Stress and Chaperones 16: 529-537.

LI M et al. 2019. Transketolase deficiency protects the liver from DNA damage by increasing levels of ribose 5-phosphate and nucleotides. Cancer Research 79: 3689-3701.

LIN S-M et al. 2012. Identification and mode of action of 5-hydroxymethyl-2-furfural (5-HMF) and 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (MTCA) as potent xanthine oxidase inhibitors in vinegars. Journal of Agricultural and Food Chemistry 60: 9856-9862.

LORNE E et al. 2008. Role of extracellular superoxide in neutrophil activation: interactions between xanthine oxidase and TLR4 induce proinflammatory cytokine production. American Journal of Physiology-Cell Physiology 294: C985-C993.

LU W et al. 2021. Effects of 5-HMF on glycolipid metabolism and hepatic function in mice with diabetes and hepatic injury. Journal of Preventive Medicine 1109-1112.

LUCAS A et al. 2019. Increased Hemoglobin Oxygen Affinity With 5-Hydroxymethylfurfural Supports Cardiac Function During Severe Hypoxia. Frontiers in Physiology 10: 1350.

LÜDEMANN J et al. 2019. Globin E is a myoglobin-related, respiratory protein highly expressed in lungfish oocytes. Scientific Reports 9: 1–11.

LV H-Y et al. 2023. Association of SULT1A2 rs1059491 with obesity and dyslipidaemia in southern Chinese adults. Scientific Reports 13: 7256.

MAGALHÃES J et al. 2005. Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle. Journal of Applied Physiology 99: 1247-1253.

MAIRBÄURL H & WEBER RE. 2012. Oxygen transport by hemoglobin. Comprehensive Physiology 2: 1463–1489.

MAO W et al. 2013. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proceedings of the National Academy of Sciences 110: 8842-8846.

MASSEY V. 2000. The chemical and biological versatility of riboflavin. Biochemical Society Transactions 28: 283-296.

MERRILL AH et al. 1981. Formation and mode of action of flavoproteins. Annual Review of Nutrition 1: 281-317.

MONIEN BH et al. 2012. Mutagenicity of 5-hydroxymethylfurfural in V79 cells expressing human SULT1A1: identification and mass spectrometric quantification of DNA adducts formed. Chemical Research in Toxicology 25: 1484-1492.

MORANA BMF et al. 2012. Toxicity studies with 5-hydroxymethylfurfural and its metabolite 5-sulphooxymethylfurfural in wild-type mice and transgenic mice expressing human sulphotransferases 1A1 and 1A2. Archives of Toxicology 86: 701-711.

MOT AI et al. 2018. An emerging role of dysfunctional axon-oligodendrocyte coupling in neurodegenerative diseases. Dialogues Clin Neurosci 20: 283–293.

MORFIN N et al. 2021. First insights into the honey bee (Apis mellifera) brain lipidome and its neonicotinoid-induced alterations associated with reduced self-grooming behavior. Journal of Advanced Research 37: 75-89.

NANGLE M & KEAST J. 2011. Semaphorin 3A inhibits growth of adult sympathetic and parasympathetic neurones via distinct cyclic nucleotide signalling pathways. British Journal of Pharmacology 162: 1083-1095.

NGUYEN HT et al. 2016. Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: Part I: Effects of sugar type. Food Chemistry 192: 575-585.

NIE H et al. 2018. Genome-Wide Identification and Characterization of Fox Genes in the Honeybee, Apis cerana, and Comparative Analysis with Other Bee Fox Genes. International Journal of Genomics 2018: 5702061.

OBA PM et al. 2022. Nutrient and Maillard reaction product concentrations of commercially available pet foods and treats. Journal of Animal Science 100: skac305.

POWERS HJ. 2003. Riboflavin (vitamin B-2) and health. The American journal of clinical nutrition 77: 1352-1360.

PRIOR RL et al. 2006. Identification and urinary excretion of metabolites of 5-(hydroxymethyl)-2-furfural in human subjects following consumption of dried plums or dried plum juice. Journal of Agricultural and Food Chemistry 54: 3744-3749.

REGENBERG B et al. 2006. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biology 7: R107.

RITTSCHOF CC et al. 2015. The energetic basis of behavior: bridging behavioral ecology and neuroscience. Current Opinion in Behavioral Sciences 6: 19-27.

RUTTER J et al. 2010. Succinate dehydrogenase - Assembly, regulation and role in human disease. Mitochondrion 10: 393-401.

SANCHEZ MGB. 2011. Taste perception in honey bees. Chemical Senses 36: 675-692.

SAWAI H et al. 2003. Characterization of the heme environmental structure of cytoglobin, a fourth globin in humans. Biochemistry 42: 5133–5142.

SHAPLA UM et al. 2018. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chemistry central journal.12: 35.

STEINBERG MH & ADAMS JG. 1991. Hemoglobin A2: origin, evolution, and aftermath. Blood 78: 2165-2177.

STITCH database. 2024. Disponível em http://stitch.embl.de/. Acesso em 12 de agosto de 2024

STURM A et al. 2009. The ABC transporter gene family of Daphnia pulex. BMC Genomics 10: 1-18.

SU H et al. 2023. Metabolism response mechanism in the gill of Oreochromis mossambicus under salinity, alkalinity and saline-alkalinity stresses. Ecotoxicology and Environmental Safety 251: 114523.

SU SY et al. 2009. Transcriptomic Analysis of EGb 761-Regulated Neuroactive Receptor Pathway in Vivo. Journal of Ethnopharmacology 123: 68-73.

TEANEY NA & CYR NE. 2023. FoxO1 as a tissue-specific therapeutic target for type 2 diabetes. Frontiers in Endocrinology 14: 1286838.

TERUYO AO et al. 1996. Mechanism responsible for oligomycin-induced occlusion of Na+ within Na/K-ATPase. Journal of Biological Chemistry 271: 25604-25610.

TOSI E et al. 2001. Honey thermal treatment effects on hydroxymethylfurfural content. Food Chemistry 77: 71-74.

ULBRICHT RJ et al. 1984. A review of 5-hydroxymethylfurfural (HMF) in parenteral solutions. Toxicological Sciences 4: 843-853.

WEBER RE & FAGO A. 2004. Functional adaptation and its molecular basis in vertebrate hemoglobins, neuroglobins and cytoglobins. Respiratory Physiology & Neurobiology 144: 141–159.

WEN YZ et al. 2010. Determination of 5-Hydroxymethylfurfural in Decoction of Rhizoma Polygonati. Guangzhou Zhongyiyao Daxue Xuebao 27: 507-509.

WU Q & BROWN MR. 2005. Signaling and function of insulin-like peptides in insects. Annual Review of Entomology 51: 1-24.

XING Q et al. 2021. Contents and evolution of potential furfural compounds in milk-based formula, ultra-high temperature milk and pasteurised yoghurt. International Dairy Journal 120: 105086.

XING Q et al. 2020. Effects of heat treatment, homogenization pressure, and overprocessing on the content of furfural compounds in liquid milk. Journal of the Science of Food and Agriculture 100: 5276-5282.

XU R et al. 2024. Proteome-metabolome profiling of wax gland complex reveals functional changes in honeybee, Apis mellifera L. iScience 27: 3.

YAMADA P et al. 2011. Isolation of 5-(hydroxymethyl) furfural from lycium chinense and its inhibitory effect on the chemical mediator release by basophilic cells. Planta Medica 77: 434-440.

YANG L et al. 2022. Global metabolomics of fireflies (Coleoptera: Lampyridae) explore metabolic adaptation to fresh water in insects. Insects 13: 823.

YANG Q et al. 2019. Human hemoglobin subunit beta functions as a pleiotropic regulator of RIG-I/MDA5-mediated antiviral innate immune responses. Journal of virology 93: 10.1128/jvi. 00718-19.

ZHAO L et al. 2013. In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. Journal of Agricultural and Food Chemistry 61: 10604-10611.

ZHANG Z et al. 2022. Distinct Roles of Honeybee Gut Bacteria on Host Metabolism and Neurological Processes. Microbiology Spectrum 10: e02438-21.

ZOU D et al. 2014. Dihydromyricetin improves physical performance under simulated high altitude. Medicine and Science in Sports and Exercise 46: 2077-2084.

ZOU D et al. 2015. Protective effects of myricetin on acute hypoxia-induced exercise intolerance and mitochondrial impairments in rats. PLoS ONE 10: e0124727.

Publicado

2025-10-10

Como Citar

RIBEIRO, Bruna Santos; ALVES, Janainne Nunes; PAIXÃO, Débora Martins; SANTOS, Hércules Otacílio; SANTOS , Wagner Silva dos; FERREIRA, Renata Gabriela Chaves; OLIVEIRA, Sheila Rodrigues; ALMEIDA, Anna Christina de; SANTOS, Eliane Macedo Sobrinho. Efeitos do hidroximetilfurfural a partir de redes de interação químico-proteínas nas espécies Apis mellifera, Bos taurus e Homo sapiens. Revista de Ciências Agroveterinárias, Lages, v. 24, n. 3, p. 515–537, 2025. DOI: 10.5965/223811712432025515. Disponível em: https://www.periodicos.udesc.br/index.php/agroveterinaria/article/view/27018. Acesso em: 19 dez. 2025.

Edição

Seção

Artigo de Pesquisa - Ciência de Animais e Produtos Derivados